

DOG Seg DOD4S mg/set ok/arl

Remote Sensing of Traffic Emissions

FIA Foundation London, 8th of June 2016

How does remote sensing function?

- Evaluation of RSD technology AccuScan 4600
 - on road and static tests (<10% of uncertainty)

Measurement of 200,000 vehicles (140,000 unique

- OBS Horiba correlation (validated)
- Evaluation of Spanish Fleet

vehicles) in 25 locations

CORETRA Project

Spain developed the fist remote sensing legislation and did a major project to validate the technology in the CORETRA project

 Remote sensing project "CORETRA" commissioned by the Ministry for Environment during 2014/2015 executed with CIEMAT

Evolution of real driving emissions

NOx of diesel vehicles wasn't significantly reduced along the Euro Standard

Source: Spanish Ministry for Environment (CORETRA 2015)

Remote Sensing Lab

Source: Spanish Ministry for Environment (CORETRA 2015) http://www.rslab.es

NOx per vehicle type

Real NOx values are above Euro St. in all vehicle categories, the gap is growing and Euro 5 and 6 are frequently worse than Euro 4

Euro Standard

Methodology to identify high emitter

Identification of the minimum percentage of vehicles that contributes most to the total emissions: High Emitters imply emissions values up to 36 times above the fleet average.

Remote Sensing Lab

Details on high emitters

RSLab Remote Sensing Lab.

Diesel passenger cars represent most high emitters. Thereof, almost half is represented by relatively new Euro 5 vehicles

Source: Spanish Ministry for Environment (CORETRA 2015)

http://www.rslab.es

Comparison of measurement technologies

RSD most cost effective technology for massive emission measurement

	Static	Test	On Board	Remote				
	ΡΤΙ	CVS	OBS-PEMS	RSD	RSD+			
	CO, PM	CO, PM,	CO, PM,	CO, PM,	CO, PM,			
ent		HC, NOx	HC, NOx	HC, NOx	HC, NO2			
ns	No	No	Yes	Yes	Yes			
	Low	High	High	High	High			
	2009/40/EC							
d	ISO 17020	200/46/EC	CE-marking	ISO 17025	ISO 17025			
hour	10	3	1	1.000	3.000			
egration	Low	Low	Limited	High	High			
	Indoor	Indoor	On board	Outdoor	Outdoor			
	50 €	2.000 €	1.500 €	1€	0,5 €			

Tecnology

Scope of measurement Real driving emissions Accuracy

Regulation/Standard Number of vehicles/hour Data automation/integration Deployment Cost/vehicle

RSLab Remote Sensing Lab.

PEMS and RSD are complementary tools

To advance in in service conformity, PEMS and RSD are complementary tools

9

In service conformity – support through RSD

Wide-scale RSD Surveillance can provide massive emission data on samples (e.g. brands, engine families) to detect abnormalities or lack of emission improvements to assure targeted PEMS investigations

Example: diesel passenger car

Peer Group	Fuel	Туре	GVW	Make	Disp Liters	Model Year	VSP kW/t	N	PM _ g/kg F	. CO	HC g/kg II	NO2 g/kg	
DP2009	D	P		D		2009	14.43	816	0.18	6.2	1.58	10.05	
DP2010	D	Р		D		2010	14.39	1,099	0.20	4.9	1.65	10.51	K
DP2011	D	Р		D		2011	13.85	996	0.15	8.4	1.62	9.83	
DP2012	D	Р		D		2012	14.57	1,564	0.14	6.5	1.51	9.93	
DP2013	D	Ρ		D		2013	14.61	2,148	0.15	6.2	1.67	10.18	
DP2014	D	Р		D		2014	14.38	774	0.14	7.1	1.62	8.77	

Exceeding peer group values

Example: gasoline passenger car

Peer					Disp	Model	VSP		PM	co	D	нс	NO2	% of				
Group	Fuel	Туре	GVW	Make	Liters	Year	kW/t	Ν	g/kg	FI g/k	(g (C	g/kg	g/kg	Group	PM	CØ	HC	NO
GP2008	G	Ρ		С		2008	14.55	506	0.06	3	3.5	0.68	0.89	0.67%	92%	36%	73%	83%
GP2009	G	Ρ		С		2009	14.57	588	0.06	11	L.7	0.63	1.35	0.98%	98%	129%	76%	140%
GP2010	G	Р		С		2010	14.68	689	0.04	6	5.3	0.92	1.09	1.16%	66%	71%	110%	119%
GP2011	G	Ρ		С		2011	14.23	267	0.05	6	5.2	1.69	1.15	0.44%	74%	67%	198%	129%
GP2012	G	Р		С		2012	14.67	1,151	0.16	11	L.4	1.12	0.78	1.56%	255%	126%	140%	101%
GP2013	G	Р		С		2013	14.29	1,928	0.16	9	9.9	1.14	0.87	2.26%	248%	104%	133%	99%
GP2014	G	Ρ		С		2014	14.38	403	0.18	12	2.0	1.20	0.59	0.91%	320%	132%	131%	67%

Emissions along brand (M1)

Relevant differences between vehicle brands

Source: RSLAB; CORETRA http://www.rslab.es

Practical applications

The real world emission database allows the implementation of efficient and sustainable mobility policies. Automobile clubs can assume an active role

Multiple applications (examples)

- Identification of high emitters (repair or substitution of vehicles)
- Traffic management (e.g. variable speed limits based on air quality or traffic density)
- Traffic emission inventory with real emission data (massive and continuously updated)
- Fraud detection (inspections or manufacturers)
- Incentives for clean vehicles or substation of high emitters)
- In service conformity testing throughout the vehicle lifecycle

Results

Effective measures for reduction of emission and optimization of circulation

Contact details

Remote Sensing Lab. Calle Gaztambide 45 28015 Madrid / Spain Tel: +34 91 5592868 Web: www.rslab.es

Josefina de la Fuente

josefina.fuente@rslab.es Mobile: +34 658 579766

Meinrad Spenger

ms@rslab.es Mobile: +34 696 226387